AQA GCSE Physics

Topic 3: Particle Model of Matter
 Notes

(Content in bold is for Higher Tier only)

Density

- The density is defined as the mass per unit volume density $=\frac{\text { mass }}{\text { volume }}$

$$
\rho=\frac{m}{V}
$$

Where the density ρ, in kilograms per metre cubed, $\mathrm{kg} / \mathrm{m}^{3}$, mass, m , in kilograms, kg and volume, V , in metres cubed, m^{3}

Density depends on the spacing of the atoms in matter

- Solids and liquids have similar densities as the space between particles does not change significantly

Solid
o Usually liquids have a lower density than solids (main exception is ice and water)

- Gases have a far lower density

0 The spacing between atoms increase $\times 10$, as the particles have lots of energy to move, so volume increases greatly and
 therefore the density decreases greatly compared to solids/liquids

Remember if questions involve change in state and ask for new volume/pressure, the mass is the same!

Changes of State

- Mass is conserved during a change of state.
- If 20 g of liquid evaporates, the gas produced will also weigh 20 g

These physical changes are reversible, and not chemical changes

- They are not chemical because the material retains its original properties when reversed

Internal Energy

- Energy which is stored by particles (atoms and molecules) within a system

0 the energy takes the forms of:

- Kinetic Energy (vibration of atoms etc.)
- Potential Energy (between the particles)

Heating a System

- Heating increases the energy the particles have
- This increases the internal energy

0 This either raises the temperature of the system
0 Or produces a change of state

Temperature Changes

Specific Heat Capacity

- The amount of energy required to raise the temperature of 1 kg of a substance by $1^{\circ} \mathrm{C}$.
change in thermal energy $=$ mass \times specific heat capacity \times temperature change

$$
\Delta E=m c \Delta T
$$

Where ΔE is the change in thermal energy, in joules J, specific heat capacity, c in joules per kilogram per degree Celcius $\mathrm{Jkg}^{-1}{ }^{\circ} \mathrm{C}^{-1}$, mass m in kilograms kg and temperature change $\Delta \mathrm{T}$ in degrees Celcius ${ }^{\circ} \mathrm{C}$.

Specific Latent Heat

- The amount of energy needed to change the state of 1 kg of a substance without a change in temperature

0 The substance needs to be at the right temperature to change state first

- Specific Latent Heat of fusion is energy to melt/freeze
- Specific Latent Heat of vaporisation is energy to boil/condense

$$
\begin{aligned}
& \text { energy for a change of state }=\text { mass } \times \text { specific latent heat } \\
& \qquad E=m L
\end{aligned}
$$

Where E , is the Energy in joules J, m is the mass in kilograms kg and specific latent heat L in joules per kilogram J/kg.

- Energy is absorbed when melting and evaporating and energy is released when freezing and condensing.
- Sublimation is when solid goes straight to gas - "dry ice" (solid CO_{2} does this)

Graph here shows the temperature of ice:

- At A it is Solid.
- At B , reaches $0^{\circ} \mathrm{C}$.
- From B to C there is no temperature change because the energy is used through melting.
- From C to D it is in liquid state.
- From D to E the water is boiling. This takes longer, because evaporation takes more energy
- From E to F the gas is heating.

www.kentchemistry.com

Pressure

- The molecules of a gas are in constant random motion. The temperature of the gas is related to the average kinetic energy of the molecules.
- The higher the temperature, the greater the average kinetic energy and so the faster the average speed of the molecules.
- When the molecules collide with the wall of their container they exert a force on the wall. The total force exerted by all of the molecules inside the container on a unit area of the walls is the gas pressure
- Changing the temperature of a gas, held at constant volume, changes the pressure exerted by the gas (known as the Pressure law)

Pressure in Gases (Physics only)

- Changing the volume of a gas affects the pressure
o A gas can be compressed or expanded by pressure changes. The pressure produces a net force at right angles to the wall of the gas container (or any surface).
o Increasing the volume in which a gas is contained, at constant temperature, can lead to a decrease in pressure (known as Boyle's law), this is due to the reduced number of collisions per unit area.
- For a gas at fixed mass and temperature:

$$
P_{1} V_{1}=\text { constant }
$$

Where the pressure P is in pascals, Pa and the volume, V , in metres cubed, m^{3}.

- Therefore, increasing the volume of a container will lead to a decrease in pressure.

Increasing the pressure of a gas (Physics only)

Doing work on a gas increases its temperature

$$
\begin{gathered}
\text { Work Done }=\text { Force } \times \text { distance }=\frac{\text { Force }}{\text { area }} \times(\text { area } \times \text { distance })=\text { Pressure } \times \text { Volume } \\
\text { work done }=\text { pressure } \times \text { volume }
\end{gathered}
$$

- Adding more particles to a fixed volume

0 Doing work on a gas means compressing or expanding the gas, so changing the volume
o Pumping more gas into the same volume means more particles are present, so more collisions occur per unit time with the walls, so pressure increases.
0 Energy is transferred to the particles when more gas is added into the fixed volume, so this heats the gas

- A fixed number of particles for a smaller volume

0 The particles collide with the wall which is moving inward
0 So the particles gain momentum, as the rebound velocity is greater than the approaching velocity
o So as the particle has a greater velocity, the pressure increases as the particles collide with the walls more frequently (time between collisions decreases)
o And the temperature also increases, as the kinetic energy of each particle increases.

